当前位置:首页 > 娱乐 > o1方法性能无上限!马腾宇等证明:推理token够多,就能解决问题

o1方法性能无上限!马腾宇等证明:推理token够多,就能解决问题

2026-01-03 05:10:08 [娱乐] 来源:河北某某金属制品教育中心

克雷西 发自 凹非寺
量子位 | 公众号 QbitAI

OpenAI用o1开启推理算力Scaling Law,方法性能走多远?

数学证明来了:没有上限。上限

斯隆奖得主马腾宇以及Google Brain推理团队创建者Denny Zhou联手证明,马腾南昌市某某餐具教育中心只要思维链足够长,证明Transformer就可以解决任何问题!推理



通过数学方法,解决他们证明了Transformer有能力模拟任意多项式大小的问题数字电路,论文已入选ICLR 2024。方法性



用网友的上限话来说,CoT的马腾集成缩小了Transformer与图灵机之间的差距,为Transformer实现图灵完备提供了可能。证明



这意味着,推理神经网络理论上可以高效解决复杂问题。解决

再说得直白些的问题话:Compute is all you need!



CoT让Transformer运行更高效

首先需要说明的方法性是,“可以解决任何问题”是一个通俗化的表述,严格来说,论文的核心结论是思维链(CoT)能够显著提升Transformer的表达能力。

作者首先通过理论分析,提出对于固定深度、多项式宽度、南昌市某某餐具教育中心常数精度的Transformer模型,如果不使用CoT,其表达能力将受限于AC0问题类别。(AC0是一类可以在并行计算中高效解决的问题,但不包括需要复杂序列化计算的问题。)

在固定指数位的情况下,固定深度、对数精度的Transformer模型即使引入了正确的舍入操作,其表达能力也仅限于TC0问题类别。

但当引入CoT时,固定深度、常数精度的Transformer模型就能够解决任何由大小为T的布尔电路解决的问题。

这表明CoT显著扩展了模型的表达能力,使其能够处理更复杂的问题。



为了验证理论分析,论文在四个核心问题上进行了实验,考虑了基础(base)、CoT和提示(hint)三种不同的训练设置:

  • 模运算(Modular Addition):并行计算问题,论文展示了CoT如何提高模型在这个问题上的准确性;
  • 置换群组合(Permutation Composition):需要序列化计算的问题,论文证明了CoT在解决这类问题上的有效性;
  • 迭代平方(Iterated Squaring):典型的序列化计算问题,论文展示了CoT如何使模型能够有效地解决这类问题;
  • 电路值问题(Circuit Value Problem):这是一个P完全问题,论文证明了即使是在模型深度较低的情况下,CoT也能使模型能够解决这类问题。

首先在可并行的模运算问题上,输入是若干个模7的数,输出是它们的模7和。

实验结果表明,所有设置下的Transformer都能够学习模加;但在较长序列(如n=16)上,CoT的优势更加明显。

这说明即使是可并行问题,CoT也能带来一定的效率提升。



在内在串行的置换群复合任务上,输入是S_5置换群中的若干个置换,输出是它们的复合结果。

结果,CoT提高了低深度模型的准确性——

不使用CoT的Transformer即使深度较大也难以学习该任务(准确率约20%),而使用CoT后即使是1层Transformer也能轻松学习(准确率100%)。



对于迭代平方任务,输入是一个质数p、一个整数r和若干个“^2”符号,输出是r^(2^k) mod p。

实验结果与置换群复合任务相似:不使用CoT时。即使16层Transformer也难以学习;而使用CoT后。1层Transformer就能完美求解。

这再次验证了理论分析,即迭代平方是内在串行的,需要CoT来提供必要的计算能力。



最后的电路值问题,输入是一个随机布尔电路的描述,输出是电路的最终输出值。

实验结果表明,在基准设置下,4层Transformer的准确率约为50%,8层约为90%,16层接近100%;

而使用CoT后,1层Transformer就能达到接近100%的准确率。

这验证了理论结果,即CoT赋予了Transformer任意电路的模拟能力,使其能够解决电路值问题这一P完全问题。



CoT+Transformer模拟门电路

除了上述实验,作者还对以下结论进行了理论证明:

对于任意一个可以用多项式大小的布尔电路计算的函数,都存在一个仅有常数层数的Transformer,可以通过足够多步数的思维链(CoT)来模拟电路的计算过程,从而计算出这个函数。

证明的思路是先将布尔电路视为一系列逻辑门的组合,然后利用Transformer中的位置编码为每个逻辑门及其状态分配一个独特的表示,进而通过逐步计算来模拟整个电路的执行过程。

这个证明的关键,在于利用CoT来逐步模拟电路中每个门的计算



具体而言,对于一个有T(n)个门的电路,作者设计了一个4T(n)个token的输入序列。

这个序列包含了电路的完整描述,每个门用4个连续的token表示:门类型、两个输入门的索引和当前门的索引,并用输入序列中的第一个token指示了电路的输入值。

然后,作者构造了一个常数深度的Transformer,这个Transformer的嵌入维度只需要O(log n),就足以对T(n)个门进行编码。

在第一层,Transformer读取输入序列,并将电路的描述信息存储到其位置嵌入中。

接下来是关键的CoT步骤。Transformer逐步生成4T(n)个token的思维链,每4个token对应电路中的一个门。

对于第i个门,Transformer执行以下操作:

  • 利用注意力机制获取两个输入门的计算结果:如果输入门是电路的输入,可以直接从输入序列中读取;如果输入门是前面计算过的中间结果,则可以从思维链的对应位置读取。
  • 根据门的类型(与、或、非等),用前馈网络计算当前门的输出。
  • 将当前门的输出写回到思维链中,作为后续门的输入。

通过这一过程,Transformer逐步模拟了电路中每一个门的计算,并将中间结果存储在思维链中。在生成完整个思维链后,最后一个门的输出就对应了电路的最终输出。

也就是说,通过将电路“展开”为一个长度为O(T(n))的思维链,即使固有深度很浅,Transformer也可以逐步执行电路中的计算。

在此基础上,作者进一步证明,具有O(T(n))长度CoT的常数深度Transformer,可以模拟任意T(n)大小的电路,因此其计算能力等价于多项式大小电路

理论打通了,实际可行吗?

能够模拟电路的计算过程,意味着CoT+Transformer能够解决可计算问题。

同时,这也说明只要有足够的CoT思考时间,大模型不需要扩展尺寸也能解决复杂问题。



有专业人士用一篇长文解释了CoT和图灵完备性之间的关系:

如果没有CoT,Transformer仅限于执行AC0复杂度类中的可并行任务;
CoT推理从根本上改变了这一格局,它使Transformer能够通过中间推理token处理串行计算,从而增加计算深度并允许模型模拟AC0以外的更深层次的电路。
这一进步将Transformer带入了P/poly领域,即多项式大小电路可以解决的问题类型。
理论上,只要有足够的CoT步骤,Transformer就可以模拟多项式大小电路可以执行的任何计算,从而缩小了Transformer与图灵机之间的差距。
但实际限制仍然存在,例如有限的上下文窗口和计算资源。要充分利用这一潜力,需要仔细的模型设计和优化。



还有人把这项成果和OpenAI的“草莓”,也就是爆火的超强模型o1联系到了一起——

草莓同样也是思考的时间越长,准确性越高,按照这个思路,只要有好的模型,就能解决人类面临的一系列难题。



甚至有人表示,如果这项研究是真的,那么AGI就已经在到来的路上了……



不过也有人认为,这只是一个理论性的结果,距离实际应用还存在很大差距。

即使抛开理论与实际条件的不同,时间和成本问题就是一个重要的限制因素。



而且实验的一个假设是模型权重被正确设置,但实际模型的训练很难达到这一程度。



还有人指出,这种模拟门电路运算,并不是大模型实际学习和工作的方式。



换言之,如何将实际问题用布尔电路表示,是Transformer从能解决运算问题到能够解决实际问题的一个关键。

但现实中,诸如“如何治疗癌症”这样的问题,很难以电路的形式去描述。



虽然距离实际应用还有一系列问题要解决,但这项研究至少揭开了CoT的巨大潜力。

作者简介

本论文一共有四名作者,全部都是华人。

按署名顺序,第一位作者为清华姚班校友李志远,是普林斯顿博士、马腾宇的博士后,现为芝加哥丰田技术学院(TTIC)的终身教授助理教授。

第二位作者是Hong Liu,也是马腾宇的博士生,现在在读,本科就读于清华,曾获得特等奖学金及优秀毕业生荣誉。

第三位是Google Brain推理团队创建者Denny Zhou,中科院博士,2017年加入Google前在微软担任了11年的高级研究员。

最后是2021年斯隆奖得主、斯坦福大学助理教授马腾宇,他是姚班校友、陈丹琦的同班同学。

论文地址:
https://arxiv.org/abs/2402.12875
参考链接:
[1]https://x.com/denny_zhou/status/1835761801453306089
[2]https://www.reddit.com/r/singularity/comments/1fiemv4/denny_zhou_founded_lead_reasoning_team_at_google/

(责任编辑:娱乐)

推荐文章
  • 金苹果龙南小学创新幼小衔接模式 打破学段壁垒

    金苹果龙南小学创新幼小衔接模式 打破学段壁垒 在“零起点”与“超前学”的现实矛盾中,幼小衔接成为许多家庭关注的教育焦点。幼儿园阶段坚持“去小学化”,但部分家长对孩子能否适应小学学习的担忧,仍催生了一定的隐性知识抢跑需求。面对这一普遍存在的“起跑线 ...[详细]
  • 万科债券迎“至暗时刻” 即将进入偿债高峰期

    万科债券迎“至暗时刻” 即将进入偿债高峰期 财联社11月27日讯记者 王海春)银行11月26日深夜披露万科一笔20亿元债券将展期的消息后,今日该公司多笔债券继续大跌。11月27日,深交所发布公告,“22万科06”盘中成交价较前收盘价首次下跌达到 ...[详细]
  • 韩媒:“出口强、内需弱”,韩国经济两极化担忧升温

    韩媒:“出口强、内需弱”,韩国经济两极化担忧升温   [环球时报综合报道]《韩国时报》12月2日报道称,韩国在人工智能AI)带动的全球经济周期中呈现明显的结构性分化迹象。三星电子、SK海力士等AI相关出口龙头企业今年第三季度业绩大幅增长,但本土需求长 ...[详细]
  • 28变19 美乌和平计划更新 乌原则同意俄称没收到

    28变19 美乌和平计划更新 乌原则同意俄称没收到 原标题:28变19 美乌和平计划更新 乌原则同意俄称没收到) 近期,围绕美国提出的解决俄乌冲突的和平计划,多方动作频频,单是目前流出的各类修改版本,就至少有三种。 ...[详细]
  • 商务部召开外贸企业圆桌会

    商务部召开外贸企业圆桌会   12月23日,商务部部长助理张力主持召开外贸企业圆桌会。10家外贸企业参会,就2025年进出口情况、2026年外贸形势等议题进行交流。  张力表示,今年以来,面对异常复杂严峻的外部形势,我国外贸顶 ...[详细]
  • 刚刚,中美机器人爆发了一场论战

    刚刚,中美机器人爆发了一场论战 一段"无加速、无遥控"的机器人视频,竟然让硅谷大佬坐不住了最近,一段来自中国初创公司的机器人视频在全球范围内引发了轩然大波。更有意思的是,这段视频不仅展示了令人惊艳的技术实力,还意外引发了一场跨越太平 ...[详细]
  • 国台办回应大陆配偶在岛内参政问题

    国台办回应大陆配偶在岛内参政问题   12月3日上午,国台办举行例行新闻发布会。记者:赖清德日前公开反对国民党拟“修法”保障陆配“参政权”,台行政机构负责人卓荣泰称,“‘国籍法修法’涉双重效忠问题”。对此有何评论?  国台办发言人张晗 ...[详细]
  • 实测豆包手机助手:AI 操作手机的时代来了?

    实测豆包手机助手:AI 操作手机的时代来了? 字节正和多家手机厂商谈合作。文丨贺乾明“对比一下京东、美团外卖、淘宝上的肯德基香辣鸡腿堡哪个更便宜,选价格最低的下单,送到三里屯 SOHO A 座的地址,下单的时候备注 ‘放前台’,下单后把订单截图微 ...[详细]
  • 泽连斯基妄言没有看到中国推动和平 中方反驳

    泽连斯基妄言没有看到中国推动和平 中方反驳   12月29日,外交部发言人林剑主持例行记者会。  有外媒记者提问,对于乌克兰总统泽连斯基和美国总统特朗普的会见结果,中方有何评论?在前往美国之前,泽连斯基表示,遗憾的是他并没有看到中国有意愿协助推 ...[详细]
  • 全球首台双臂协作巡操机器人“钧仪”亮相,上岗配电间

    全球首台双臂协作巡操机器人“钧仪”亮相,上岗配电间 IT之家 12 月 1 日消息,优艾智合机器人今日公布了全球首台双臂协作巡操机器人“钧仪”。在位于南方电网广东广州供电局的一座 220 千伏变电站高压室内,“钧仪”正在进行高危环境下的巡检操作,通过高 ...[详细]